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Abstract

The linear stability of a flexible, cylindrical rod subjected to annular leakage flow is studied. The mathematical

models developed by Li, Kaneko, and Hayama in 2002 and Fujita and Shintani in 2001 are bridged and extended, to

account for a flexible rod with equilibrium offset (eccentricity) in laminar or turbulent leakage flow. Stability

characteristics are analyzed numerically for a variety of configurations. It is found that simply supported rods may

become unstable at a certain critical flow speed by either divergence or flutter, depending on dimensions and fluid/solid

properties. It is furthermore found that the critical flow speed is quite insensitive to use of a laminar friction model at

high Reynolds numbers in cases of divergence, but sensitive to it in cases of flutter. These findings are verified

analytically though analysis of an energy equation. This equation shows that (i) divergence instability is independent of

fluid friction; (ii) flutter instability is caused solely by fluid friction. It also suggests a possible explanation to the

question of why a ‘wrong’ fluid friction assumption gives a too large critical flow speed in cases of flutter instability at a

high Reynolds number.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A cylindrical rod in a narrow annulus is a common component in power-generation engineering. It may also serve as

a model of a high-speed train in a tunnel (Sugimoto, 1996; Tanaka et al., 2001). The fluid flow within the narrow gap

may initiate flutter (unstable oscillations) or divergence (buckling). It is characteristic for this and related leakage-flow

problems that the rod-annulus geometry facilitates significant simplifications of the Navier–Stokes equations, but the

(unsteady) inertia forces and the viscous forces have both a major influence on the dynamics and the stability properties

of the structure, so neither potential theory nor lubrication theory is sufficient in itself.

The model problems which have been studied so far may roughly be separated into two classes: (i) a flexibly mounted

rigid cylinder (or plate) in a fixed, rigid outer cylinder (or duct); (ii) a flexible cylinder (or plate) in a fixed, rigid outer
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Nomenclature

A vibration amplitude

c nondimensional structural damping coefficient

C damping matrix

D structural displacement

D rate of work (power) by damping forces

e nondimensional offset

E modulus of elasticity

E� coefficient of viscoelastic material damping

E equilibrium offset

f nondimensional, unsteady fluid force per unit rod length

DF unsteady fluid force per unit rod length

F fluid-structure coupling matrix

h nondimensional, unsteady fluid gap

h0 nondimensional structural displacement

H fluid gap

I area moment of inertia

k nondimensional structural stiffness parameter

K stiffness matrix

L length of the rod

m nondimensional structural mass parameter

M structural mass per unit length

M mass matrix

N finite element shape function vector

p nondimensional pressure

P pressure

P rate of work (power) by fluid friction forces

qx; qy nondimensional flow rate in circumferential (x) and axial (y) direction

QX ;QY flow rate in circumferential (x) and axial (y) direction, respectively

R0 external radius of rod

Re Reynolds number

Ri internal radius of hollow rod

st; sr nondimensional translational and rotational stiffness coefficient, respectively

ST ;SR translational and rotational stiffness coefficient, respectively

S fluid loading matrix

t time

T period of oscillation

T kinetic energy

U ;V flow velocity in circumferential and axial direction, respectively

V̄ mean flow speed in axial direction

V potential energy

W work

x; y nondimensional circumferential and axial coordinate, respectively

X ;Y ;Z circumferential, axial, and radial coordinate, respectively

a nondimensional friction parameter

b nondimensional friction parameter related to the case of laminar flow only

dij Kronecker delta, dij ¼ 1 for i ¼ j; 0 for iaj

e nondimensional radius-to-length ratio

�1; . . . ; �9 nondimensional offset parameters

z nondimensional local element variable

y nondimensional circumferential coordinate (same meaning as x)

k wave number

l friction factor defined by (6)

L complex eigenvalue
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n kinematic viscosity

xin; xex inlet and exit pressure loss coefficient, respectively

X a nondimensional parameter defined by (18)

r fluid density

t nondimensional time

f phase angle

o nondimensional cyclic frequency

O dimensional cyclic frequency
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cylinder (or duct). Early studies of class (i) problems were reviewed by Mulcahy (1980). More recent, general reviews are

Paı̈doussis (1996) and Weaver et al. (2000). Paı̈doussis’s (2004) monograph contains a comprehensive (200 pages) and

wide-ranging review of the entire subject. An example of a recent class (i) study is Li et al. (2002) who investigated the

stability of a flexibly mounted rigid cylinder in a rigid outer cylinder, allowing for offset (from the axis of the outer

cylinder) of the inner cylinders equilibrium.

The problem studied in the present work belongs to class (ii). Papers in this class are relatively few. The stability of a

flexible cylinder in a narrow coaxial duct with flow was studied by Paı̈doussis and Pettigrew (1979), Paı̈doussis et al.

(1990), Fujita and Shintani (2001), and Fujita et al. (2004). The stability of a flexible plate in a narrow rigid duct with

flow was studied by Inada (1999), Inada and Hayama (2000), and Inada (2004). Kaneko et al. (2000) and Wu and

Kaneko (2005) applied a similar model to explain sheet flutter observed in paper manufacturing machines and in the

production of steel plates.

The mentioned studies of Inada (1999), Inada and Hayama (2000), Inada (2004), Li et al. (2002), Fujita and Shintani

(2001), Fujita et al. (2004), Kaneko et al. (2000), and Wu and Kaneko (2005) are all based on the (plane, 2-D) leakage-

flow model of Inada and Hayama (1990). This model uses flow rates rather than flow velocities, an approach that

simplifies the underlying Navier–Stokes equations in a very efficient way. It accounts for both laminar and turbulent

flows via employment of a friction coefficient, as known from engineering analysis of pipe and duct flows [e.g., Fox and

McDonald (1985)].

The 2-D analyses of Kaneko et al. (2000) and Wu and Kaneko (2005) thus also account for both laminar and

turbulent flows. But in the axisymmetric problems studied by Li et al. (2002), Fujita and Shintani (2001), and Fujita

et al. (2004) the models are restricted to laminar flow only. Most industrial flows of Newtonian fluids (like air and

water) are however turbulent, and it is obviously not too reassuring to apply a laminar flow model to highly turbulent

flows. In the present paper the mentioned earlier studies are developed to account for turbulent flow, and results

obtained with laminar and turbulent models are compared. It is noted that a ‘bulk-flow theory for turbulence in

lubricant films’ has been developed by Hirs (1973). This is a lubrication theory (where the fluid inertia is neglected)

given in terms of average flow velocities. The friction terms in the equations derived in the present paper agree with

those of Hirs.

Another extension is the inclusion of offset of the equilibrium position from the annulus symmetry axis (eccentricity).

This is also of practical interest, because perfect alignment of the inner cylinder is difficult, and nonconservative

(circulatory) systems, like the present, are often sensitive to imperfections (Herrmann, 1971; Langthjem and Sugiyama,

2000).

The ‘idealized’ case with assumptions of laminar flow and perfect alignment (no eccentricity) makes elimination of

the flow rate perturbations possible, leaving the structural deflection as the only unknown (Fujita and Shintani, 2001).

Such a simplification is not possible in the more general setting considered here. The axial flow rate perturbation must

also be explicitly determined, in addition to the structural deflection. [The circumferential flow rate perturbation is then

obtained from the continuity equation.]

It must be emphasized that determination of the axial flow rate perturbation also is necessary for a correct analysis of

cases with moving rod ends, even if laminar flow and perfect alignment is assumed, at least if Inada and Hayama’s

(1990) fluid boundary conditions are adopted. This is because these boundary conditions express, in fact, a turbulent

pressure loss. They have a form analogous to ‘minor head loss’ expressions for turbulent flow in pipes, as described in

books on engineering fluid dynamics.

The analysis of this paper gives a system of coupled fluid-structure differential equations with, as mentioned, the

structural deflection and the axial flow rate perturbation as unknowns. These equations are discretized using the

Galerkin finite element method (in the form sometimes called the Bubnov–Galerkin method (Cook et al., 1989)). It is

worthwhile noting that the Galerkin finite element method is completely equivalent to the ‘classical’ Galerkin weighted

residual method (based on global expansion functions), and the latter method could just as well have been used in the
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present context. The advantage of the finite element form of Galerkin’s method is that various boundary (rod support)

conditions and ‘asymmetries’ (such as, for example, partial immersion) can be taken into consideration in a very simple

way, since the (local, element) expansion functions are chosen ‘once and for all’.

Li et al. (2002) use a collocation method to determine both the axial and the circumferential flow rate perturbation.

Their approach could also have been applied to the present problem including a flexible rod; we think, however, that the

Galerkin finite element-based approach of this paper is simpler.

It is remarked that a formulation of fluid boundary conditions for movable rod ends that does not require explicit

evaluation of the axial flow rate perturbation can be achieved through consideration of a shear force balance in the way

of Hawthorne (1961) and Paı̈doussis (1966). But still, with the structural deflection as the only unknown, only laminar

flow can be considered.

The paper is divided into 10 sections. In Section 2 equations of motion are given for a laminar and, in particular, a

turbulent leakage flow, and for a Bernoulli–Euler rod. In Section 3 these equations are made nondimensional. In

Section 4 it is discussed how the fluid equations can be simplified. In Section 5 the fluid force acting on the rod is

evaluated. In Section 6 the discretization of the fluid and solid equations of motion is discussed. In Section 7 an

eigenvalue problem for dynamic stability analysis is formulated. In Section 8 some numerical results are presented and

discussed. The main findings are that (i) a simply supported rod may become unstable by either divergence or flutter,

depending on dimensions and fluid/solid properties; (ii) the critical flow speed where a divergence instability is initiated

is quite insensitive to use of a laminar friction model at high Reynolds numbers; (iii) the critical flow speed where a

flutter instability is initiated is, on the contrary, sensitive to a ‘wrong’ flow model assumption. In Section 9 a detailed

analysis of these findings is carried out through an energy balance study. This study is able to explain points (i)–(iii)

outlined above. Section 10 sums up the main conclusions. The final part of the paper includes five appendices with

mathematical details.
2. Equations of motion and boundary conditions

2.1. Fluid equations of motion

Consider an incompressible flow through a narrow gap of clearance H between coaxial cylinders of length L, of which

the inner cylinder has radius R0 (Fig. 1(a)). Assuming that H5R0, H5L, Li et al. (2002) argue that the relations

between pressure P, flow rate in circumferential (X) direction QX , and flow rate in axial (Y) direction QY , can be

expressed as
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qt
¼ 0, (3)

where t is the time and X ¼ yR0, 0pyp2p, see Fig. 1. The flow rates QX and QY are defined as (Inada and Hayama,

1990)

QX ðX ;Y ; tÞ ¼

Z H

0

UðX ;Y ;Z; tÞdZ,

QY ðX ;Y ; tÞ ¼

Z H

0

V ðX ;Y ;Z; tÞdZ, (4)

where U and V are the flow velocities in the X and Y direction, respectively. Q2 is the total flow rate squared, given by

Q2 ¼ Q2
X þQ2

Y ; ðQ
2ÞX and ðQ2ÞY are the projections of Q2 onto the X and Y direction, respectively. Let c be the angle

between the flow direction and the Y-axis. Then ðQ2ÞX ¼ Q2 sinc and ðQ2ÞY ¼ Q2 cosc. Since sinc ¼ QX=Q and

cosc ¼ QY=Q,

ðQ2ÞX ¼ QQX ; ðQ
2ÞY ¼ QQY . (5)
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Fig. 1. (a) Definition sketch of coordinates and symbols of the physical system. An elastic rod of length L and external radius R0 is

immersed in an annulus with fluid gap H. The fluid flow is thought to be initially described in cylindrical polar coordinates ðY ; y; rÞ. The
stable equilibrium of the rod is offset from the centre axis by the distance E. Fluid pressures a little before the annulus entrance and a

little after the annulus exit are denoted by Pin and Pex, respectively. (b) Definition sketch of coordinates and symbols used in the small-

gap approximation. When the fluid gap is small, the curvature of the fluid channel is insignificant, and the fluid flow within the gap is

effectively equivalent to the flow within two plates of dimension 2pR0 � L (of which half is shown), described in terms of rectangular

coordinates ðX ;Y ;ZÞ. The flow velocities in these directions are U, V, and W, respectively. They are, by integration over the gap,

replaced by the flow rates QX and QY , and the gap rate-of-change qH=qt.
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Inserting (5) into (1) and (2), it may be confirmed that the fluid friction parts (the last terms) are in agreement with

Eqs. (7a)–(7b) of Hirs (1973).

The main assumption of Li et al. for the development of (1)–(3) is, as indicated above, that the fluid gap is so narrow,

relative to the radius and the length of the inner cylinder, that the flow there resembles a boundary layer. This implies

that (i) the pressure difference across the gap (in the radial (Z) direction) is negligibly small, (ii) the effect of curvature

can be ignored [see, e.g., Schlichting (1968), pp. 223–224]. The fluid flow within the gap is thus, effectively, equivalent to

the flow within two plates (Fig. 1(b)).

As discussed in the Introduction, a difference between (1) and (2) and the corresponding equations in Li et al. (2002),

and in Fujita and Shintani (2001), is that (1) and (2) include both laminar and turbulent flow (included in the friction

factor l), while Li et al. and Fujita and Shintani assume laminar flow only. The derivation of both laminar and

turbulent friction terms is given in Appendix A.

The value of the friction factor l follows the experimental results of Shimoyama and Yamada (1957) for coaxial,

smooth cylinders with very small clearance:

l ¼
48Re�1 for Reo1300 (laminar flow);

0:26Re�0:24 for Re42000 (turbulent flow);

(
(6)
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where the Reynolds number Re is defined as

Re ¼ Q=n. (7)

Shimoyama and Yamada (1957) write that fully developed turbulence ensues for Re42500. In the domain

1300oReo2000 the value of l is characterized by strong scatter (see Fig. 3 in their paper). [Shimoyama and Yamada

(1957) mention just that l � 0:035�0:041 in this domain; it cannot be defined more precisely.] The scatter in the domain

2000oReo2500 is much more limited. Based on this it is thought reasonable to assume that the flow is turbulent from

Re ¼ 2000. In the transition domain 1300oReo2000, the friction factor (not Eq. (6) directly, but its steady part, to be

defined by Eq. (11)) is simply interpolated linearly between the laminar and turbulent values. [This has no physical

meaning, but is done solely to avoid discontinuities in the eigenvalue plots (Section 8), such that the evolution of the

individual eigenvalues can be followed.]

2.2. Fluid boundary conditions

By making use of the Bernoulli and momentum equations, the fluid boundary conditions, applying at Y ¼ 0 and

Y ¼ L, are obtained as (Inada and Hayama, 1990)

PðX ; 0; tÞ ¼ Pin � ð1þ xinÞ
r
2

ðQ2ðX ; 0; tÞÞY
H2ðX ; 0; tÞ

, ð8Þ

PðX ;L; tÞ ¼ Pex þ xex
r
2

ðQ2ðX ;L; tÞÞY
H2ðX ;L; tÞ

.

Here Pin is the mean pressure a little before the annulus entrance, and Pex is the mean pressure a little behind the

annulus exit; r is the fluid density. The inlet loss coefficient xin accounts for the formation of a ‘vena contracta’ just after

the inlet. Books on engineering fluid dynamics give, for pipe flow with a contraction, that xin typically is in the range

between 0 and 0.5. As to the exit flow, xex ¼ 0 corresponds to an abrupt channel enlargement where all kinetic energy is

lost. Values xex40 correspond to additional pressure losses, for example due to a small contraction before the exit.

2.3. Linearization of the fluid equations

The fluid gap H, the pressure P, and the flow rates QX and QY are separated into steady (constant) parts (with a bar)

and unsteady (disturbance) parts (with a D) (Inada and Hayama, 1990)

HðX ;Y ; tÞ ¼ H̄ þ DHðX ;Y ; tÞ; PðX ;Y ; tÞ ¼ P̄þ DPðX ;Y ; tÞ, (9)

QX ðX ;Y ; tÞ ¼ DQX ðX ;Y ; tÞ; QY ðX ;Y ; tÞ ¼ Q̄Y þ DQY ðX ;Y ; tÞ.

It should be noticed that the steady part of the circumferential flow rate, Q̄X , is assumed to be zero. This is considered

reasonable for small-amplitude vibrations, as assumed here; QX is then much smaller than the axial flow rate QY . As

linear stability is to be investigated, only terms of first order in the small disturbances DP, DQX , DQY , DH are kept. The

influence of the (first order) fluctuations in QY on the friction coefficient l is included as (Inada and Hayama, 1990)

l ¼ l̄þ Dl ¼ l̄þ
ql
qQY

� �
ðQX ;QY Þ¼ð0;Q̄Y Þ

DQY , (10)

where

l̄ ¼
48Re�1; Reo1300;

0:26Re�0:24; Re42000;

(
Re ¼ Q̄Y=n. (11)

[A term ½ql=qQX �ðQX ;QY Þ¼ð0;Q̄Y Þ
DQX is basically also to be included on the right-hand side of (10), but it is zero since the

steady part of QX is assumed to be zero.] Evaluation of (10) gives

l ¼

48Re�1 1�
DQY

Q̄Y

� �
; Reo1300;

0:26Re�0:24 1� 0:24
DQY

Q̄Y

� �
; Re42000:

8>>><>>>: (12)
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Negative powers of the gap H are expanded as

H�1 ¼ ðH̄ þ DHÞ�1 ¼ H̄�1 � H̄�2DH þ OðDH2Þ,

H�2 ¼ H̄�2 � 2H̄�3DH þ OðDH2Þ; H�3 ¼ H̄�3 � 3H̄�4DH þ OðDH2Þ. (13)

Expanding (5) and keeping only the steady part and first-order disturbance-parts, we obtain (see Appendix B)

ðQ2ÞX � Q̄YDQX ; ðQ
2ÞY � Q̄2

Y þ 2Q̄YDQY . (14)

Using (9) and (11)–(14), the unsteady parts of (1), (2) and (3) can, to first order in the disturbances, be written as

1

r
qDP

qX
¼ �

1

H̄

qDQX

qt
þ

Q̄Y

H̄

qDQX

qY

� �
�

l̄
4

Q̄Y

H̄
3
DQX , (15)

1

r
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¼ �

1

H̄

qDQY

qt
þ

Q̄Y

H̄

qDQY

qY
�

qDH

qt

� �
�

Q̄2
Y

H̄2

qDH

qY

� �
�

l̄
4

Q̄Y

H̄3
ð1þ XÞDQY � 3

Q̄Y

H̄
DH

� �
, (16)

qDQX

qX
þ

qDQY

qY
þ

qDH

qt
¼ 0. (17)

The coefficient X appearing in the friction term in (16) is given by

X ¼
0 for Reo1400;

0:76 for Re42000:

(
(18)

The resulting factor 1:76 ð¼ 1þ XÞ in (16), in the turbulent case, comes from linearization of the term 1
4
lQQy=H3;

(details are given in Appendix B). Similar to the steady friction factor l̄, X is taken to vary linearly between 0 and 0.76 in

the transition domain 1300oReo2000 (and the same comments apply to the reasons for doing this).

The corresponding steady parts to (15)–(17) can, together with the structural force balance Eq. (23) (see Section 2.5),

be used to determine the position of stable equilibrium. Here we assume that this is Y � E, where E is a possible offset

(see Section 2.4). Accordingly, the steady equivalents of (15)–(17) are not used.

By linearization, the unsteady boundary conditions (8) become

DP ¼ �ð1þ xinÞr
Q̄2

Y

H̄2

DQY

Q̄Y

�
DH

H̄

� �
at Y ¼ 0, (19)

DP ¼ xexr
Q̄2

Y

H̄2

DQY

Q̄Y

�
DH

H̄

� �
at Y ¼ L.

Finally, for later use, we will at this place also define the mean flow speed in the Y direction, V̄ , as

V̄ ¼ Q̄Y=H̄. (20)

2.4. Modifications due to equilibrium offset

When the equilibrium of the rod is offset a distance E from the centre axis, the steady gap H̄ is not a constant but a

function of X (Li et al. (2002), Eq. (17)):

H̄ ¼ H̄ðX Þ ¼ H̄0 � E cosðX=R0Þ, (21)

where H̄0 is a constant. Going back to (1) and (2) it will be seen that no modifications are introduced in (15). But in (16)

the additional term

Q̄Y

H̄
3

E

R
sinðX=R0ÞDQX (22)

must be added to the right-hand side. This is in agreement with Li et al. (2002), Eqs. (20)–(22).
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2.5. Equation of motion and boundary conditions for the rod

It is assumed that the rod vibrates only in the plane X ¼ 0 (y ¼ 0; see Fig. 1). It is furthermore assumed that the rod is

sufficiently slender, and the vibrations of sufficiently low frequency, that shear deformation and rotatory inertia can be

neglected. Kelvin–Voigt type structural damping is taken into consideration. The equation of motion is then given by

(Paı̈doussis, 1998)

M
q2D

qt2
þ E�I

q5D

qY 4qt
þ EI

q4D

qY 4
¼ DF , (23)

where DðY ; tÞ is the displacement in the plane X ¼ 0, M is the structural mass per unit length, E is the modulus of

elasticity, E� is the coefficient of material damping (viscoelastic resistance), I is the area moment of inertia, and DFðY ; tÞ
is the unsteady fluid force per unit length.

General boundary conditions, covering any set of standard boundary conditions, can be specified as (Paı̈doussis,

1973)

EI
q2D

qY 2
þ E�I

q3D

qY 2qt
� SR0

qD

qY
¼ 0; EI

q3D

qY 3
þ E�I

q4D

qY 3qt
þ ST0D ¼ 0; at Y ¼ 0,

EI
q2D

qY 2
þ E�I

q3D

qY 2qt
þ SRL

qD

qY
¼ 0; EI

q3D

qY 3
þ E�I

q4D

qY 3qt
� STLD ¼ 0; at Y ¼ L, (24)

where ST0, STL are translational, and SR0, SRL rotational, springs constants at Y ¼ 0 and L, respectively. A rod

clamped at Y ¼ 0 and free at Y ¼ L, for example, is obtained by letting SR0 ¼ ST0 ¼ 1 and SRL ¼ STL ¼ 0. [This,

however, is not used directly in the finite element analysis in Section 6. Zero displacement/rotation boundary conditions

are implemented in exact form, in order to avoid an ill-conditioned matrix system.]
3. Nondimensionalization

To recast the governing equations into nondimensional form, the following nondimensional parameters are

introduced.

Fluid parameters:

x ¼
X

R0
; h ¼

DHeH ; h̄ ¼
H̄eH ; h̄0 ¼

H̄0eH ; e ¼
EeH ; e ¼

R0

L
,

p ¼
DP

r eQ2= eH2
; qx ¼

DQXeQ ; qy ¼
DQYeQ ; q̄y ¼

Q̄YeQ ; a ¼
lL

4 eH ; b ¼
12nLeQ eH . (25)

Structural parameters:

m ¼
M

M0
; c ¼

E�I eH
M0L3 eQ ; k ¼

EI eH2

M0L2 eQ2
; f ¼ DF

eHL2

M0
eQ2

,

h0 ¼
DeH ; st ¼ ST

eH2L

M0
eQ2
; sr ¼ SR

eH2

M0L eQ2
. ð26Þ

Common parameters:

y ¼
Y

L
; t� ¼

eHLeQ ; t ¼
t

t�
. (27)

Here M0 ¼ rpR2
0.
eH is a reference gap and eQ a reference flow rate, both of which can be chosen freely ða0Þ. The final

equations are simplified by choosing eH ¼ H̄0, such that h̄0 ¼ 1, see (45)–(47), but it is thought useful to keep h̄0 in these

equations for future developments involving, e.g., nonconstant mean fluid gap [such as considered by Li et al. (2002)].

Li et al. (2002) take eQ to be the variable Q̄Y (the axial mean flow rate), such that q̄y ¼ 1. But then the parameters witheQ in the denominator will be undefined for Q̄Y ¼ 0. It is numerically more convenient to keep q̄y as an independent
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flow-rate parameter, by defining eQ as a constant, e.g.

eQ ¼ H̄0

L

EI

M0

� �1=2

. (28)

Reduction of the parameters in (25)–(26) by use of (28) is straightforward and will not be shown here.

The nondimensional governing fluid equations, with modification for equilibrium offset (22) included, are

qp

qx
¼ �e

1

h̄

qqx

qt
þ

q̄y

h̄2
qqx

qy
þ

a

h̄3
q̄yqx

� �
, (29)

qp

qy
¼ �

1

h̄

qqy

qt
�

q̄y

h̄2
qqy

qy
þ

q̄y

h̄2
qh

qt
þ

q̄2y

h̄3
qh

qy
�

a

h̄3
ð1þ XÞq̄yqy �

3q̄2y

h̄
h

( )
þ
1

e
e

h̄3
q̄yqx sin x, (30)

qqx

qx
þ e

qqy

qy
þ
qh

qt

� �
¼ 0. (31)

The corresponding boundary conditions are

p ¼ �ð1þ xinÞ
q̄y

h̄2
qy �

q̄y

h̄
h

� �
at y ¼ 0,

p ¼ xex
q̄y

h̄
2

qy �
q̄y

h̄
h

� �
at y ¼ 1. (32)

The nondimensional equation of motion for the rod is

m
q2h0

qt2
þ c

q5h0

qy4qt
þ k

q4h0

qy4
¼ f . (33)

The corresponding boundary conditions are

k
q2h0

qy2
� sr0

qh0

qy
¼ 0; k

q3h0

qy3
þ st0h0 ¼ 0 at y ¼ 0,

k
q2h0

qy2
þ sr1

qh0

qy
¼ 0; k

q3h0

qy3
� st1h0 ¼ 0 at y ¼ 1. (34)

Finally, it is noted that for the gap with offset, the steady part (21) can be written in nondimensional form as

h̄ ¼ h̄ðxÞ ¼ h̄0 � e cos x. (35)
4. Simplification of the fluid equations

4.1. Dependence on the circumferential coordinate x

The rod deflection in circumferential direction x is given h0 cos x, 0pxp2p, see Fig. 1. Due to the narrow gap

geometry, the unsteady gap varies in the same way (Li et al., 2002, Eq. (18)), i.e.,

hðx; y; tÞ ¼ h0ðy; tÞ cos x. (36)

From (31) it is seen that this also applies to the axial flow rate qy perturbation,

qyðx; y; tÞ ¼ qy0ðy; tÞ cosx, (37)

and that the circumferential flow rate perturbation qx varies with x as

qx ¼ �e
qqy0

qy
þ
qh0

qt

� �
sin x. (38)

The x-momentum equation (29) shows that the perturbation pressure p then also varies harmonically with x, i.e., we

have (Fujita and Shintani, 2001)

p ¼ �
q2p

qx2
. (39)
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4.2. Elimination of qx

It is necessary to solve the coupled system (29)–(31) and (33)–(34) for the unsteady fluid gap h, and the axial flow rate

perturbation qy, in order to take the boundary conditions (32) into consideration. But information concerning the

circumferential flow rate perturbation qx are not needed. This function may thus be eliminated. Using (36)–(39) in (29)

and (30) gives, after differentiation of (29) with respect to x,

�p ¼ e2
1

h̄
cos x�

1

h̄2
e sin2 x

� �
q2h0

qt2
þ

q2qy0

qyqt

 !
þ

1

h̄2
cos x�

2

h̄3
e sin2 x

� �
q̄y

q2h0

qyqt
þ

q2qy0

qy2

 !(

þ aq̄y

1

h̄3
cos x�

3

h̄4
e sin2 x

� �
qh0

qt
þ

qqy0

qy

� �)
, ð40Þ

qp

qy
¼

1

h̄2
cos x�

1

h̄3
e sin2x

� �
q̄y

qh0

qt
�
1

h̄
cosx

qqy0

qt
�

1

h̄2
cos xþ

1

h̄3
e sin2x

� �
q̄y

qqy0

qy
þ

q̄2y

h̄3
cosx

qh0

qy

þ a cos x
3

h̄4
q̄2yh0 �

1þ X

h̄3
q̄yqy0

� �
. ð41Þ

4.3. Elimination of qy as well for a special case

Further simplification of (40) and (41) is possible if (i) the rod is at least simply supported at both ends; (ii) the flow is

laminar; (iii) there is no offset of the equilibrium. Condition (i) implies that the fluid boundary conditions reduce to

p ¼ 0 at y ¼ 0; 1. Accordingly, information concerning the axial flow qy rate is not necessary either, and may be

eliminated. Condition (ii) implies that a ¼ b and X ¼ 0. Condition (iii) implies that e ¼ 0. Inserting these values in (40)

and (41), followed by differentiation of (41) with respect to y, and addition of the two equations, a single equation in p

and h0 is obtained as

e2
q2p

qy2
� p ¼ e2

1

h̄

q2h0

qt2
þ

2q̄y

h̄2
q2h0

qyqt
þ

b

h̄3
qh0

qt
þ b

3q̄y

h̄4
qh0

qy
þ

1

h̄3
q2h0

qy2

� �
cos x, (42)

where (39) has been used to obtain the second term on the left-hand side. Relating (42) to the rod equation (33), the left-

hand side acts as the forcing term f (see Section 5). The terms on the right-hand side have the following physical

meanings. The first term is an inertia force due to added fluid mass. The second term is a Coriolis force due to the

movement of fluid mass in the deformed (curved) gap. The third term is a viscous damping force. The fourth term is a

nonconservative (tangential, or ‘follower’-type) viscous force. The fifth term is compressive ‘moving load-type’ force (or

‘centrifugal force’), conservative or nonconservative depending on the structural boundary conditions.

It is noted that Fujita and Shintani (2001) give an equation similar to (42), but in symbolic (non-explicit) form, and

without the first term on the left-hand side (Eq. (10) in their paper). Although e is a small parameter (see (25)) it is not

clear at this point whether this term can be neglected, as the right-hand side also is multiplied by e2. But by evaluating

the resultant fluid force acting on the rod, by integrating the fluid pressure over the rod surface (see the following

section) it will become clear that the first term (left-hand side) in fact is small in comparison with the second (see (58) in

Section 9).

In the following, Eq. (42) will be used in analysis of instability mechanisms (Section 9). It will not be used in

connection with numerical computations.
5. Evaluation of the fluid force acting on the rod

The resultant fluid force acting on the rod is obtain by integrating the fluid pressure over the rod surface. Let

rðxÞ ¼ r0 þ e cos x, r0 ¼ R0= eH, denote the radius of the rod, measured from the centre axis of the duct, in

nondimensional form. The (nondimensional) unsteady fluid force per unit length, acting in the x ¼ 0 direction, is then

(Paı̈doussis, 1998, p. 40)

f ðy; tÞ ¼
rL2

M0

Z 2p

0

rðxÞpðx; y; tÞ cos xdx. (43)
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The nondimensional factor rL2=M0 appears because the physical (dimensional) perturbation pressure DP was

nondimensionalized using fluid variables, while the physical (dimensional) fluid force DF was nondimensionalized using

structural (rod) variables; see Eqs. (25) and (26), respectively.

Eq. (43) must now be applied to the momentum equations (40)–(41) and boundary conditions (32), in order to

convert the perturbation pressure pðx; y; tÞ in these equations to the fluid force f ðy; tÞ, such that they can be coupled

with the structural equations (33)–(34). It is noted that, with equilibrium offset, the steady fluid gap h̄ is not a constant

but a function of x, see Eq. (35). Integration of (40), (41), and (32) over x will thus result in quite complicated

expressions. To simplify the integrals, such that they can be evaluated analytically and such that the final equations are

reasonably ‘compact’, it will be assumed that the offset e is small, e51. Fractions in h̄ will then be expanded in Taylor

series about e ¼ 0, keeping only terms up to Oðe3Þ, for example,

1

h̄
¼

1

h̄0 � e cos x
¼

1

h̄0
þ

e

h̄20
cos xþ

e2

h̄30
cos2xþ Oðe3Þ. (44)

Fig. 2 gives an indication of the range of validity of the right-hand side of (44). The upper curve depicts the function

1=ð1� eÞ, the lower curve its second-order Taylor expansion 1þ eþ e2. At e ¼ 0:25 the difference is 0:021�2:1%. The

error is increasing rapidly for larger values of e. In the light of Fig. 2, it is thought reasonable to consider off-sets up to

e � 0:25h̄0.

Applying (43) and (44) to the momentum equations (40)–(41) and boundary conditions (32) gives

�f ¼ p0
�1
h̄0

q2h0

qt2
þ

q2qy0

qyqt

 !
þ
�2

h̄20
q̄y

q2h0

qyqt
þ
q2qy0

qy2

 !
þ aq̄y

�3

h̄30

qh0

qt
þ

qqy0

qy

� �( )
, (45)

e2
qf

qy
¼ p0

�4

h̄20
q̄y

qh0

qt
�
�6
h̄0

qqy0

qt
�
�5

h̄20
q̄y

qqy0

qy
þ
�7

h̄3
0

q̄2y
qh0

qy
þ a 3

�8

h̄40
q̄2yh0 � ð1þ XÞ

�7

h̄30
q̄yqy0

 !( )
, (46)

e2f ¼ �ð1þ xinÞp0
�9

h̄2
0

q̄y qy0 �
q̄y

h̄0
h0

� �
at y ¼ 0,

e2f ¼ xexp0

�9

h̄20
q̄y qy0 �

q̄y

h̄0
h0

� �
at y ¼ 1, ð47Þ

where

p0 ¼ pr
R3

0eHM0

(48)

is a new nondimensional parameter (involving the factor rL2=M0 in (43), a p from the integration over x, and R0

replacing L due to the use of e).
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1.4
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2

e

Fig. 2. Check on range of validity of (44). Upper curve: the function 1=ð1� eÞ. Lower curve: the Taylor approximation 1þ eþ e2.
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The functions �1; �2; . . . ; �9, listed in Appendix B, represent the offset. Without offset ðe ¼ 0Þ, all of them are

identically equal to 1.
6. Discretization

The Bubnov–Galerkin finite element method (Cook et al., 1989, Chapter 15; Zienkiewicz and Taylor, 1991, Chapters

11, 12) will be applied for discretizing and solving the coupled fluid and rod differential equations (33), (45), and (46),

subject to the boundary conditions (34) and (47). The rod, and the fluid surrounding it, is divided into Ne finite elements

of equal lengths, ‘e. Within each element e, the gap perturbation (and rod displacement) h0e, the axial flow rate

perturbation qy0e, and the fluid force f e are approximated as

h0eðy; tÞ ¼ NðyÞheðtÞ; qy0eðy; tÞ ¼ NðyÞqeðtÞ; f eðy; tÞ ¼ NðyÞfeðtÞ, (49)

where NðyÞ is a row vector (matrix of dimension 1� 4) of shape functions (cubic polynomials, see Appendix E) and

heðtÞ, qeðtÞ, and peðtÞ are column vectors (matrices of dimension 4� 1) which represent generalized element nodal

coordinates.

By (i) inserting (49) into (33), (45), and (46); (ii) multiplying these equations with NT from left, and integrating over y;

(iii) implementing the boundary conditions (34) and (47) via integration by parts; and (iv) assembling the systems of Ne

element matrices, the discrete fluid equations (45), (46) and the rod equation (34) can be written on matrix

form as

Mf
€hþ Cfh1

_hþ Cfq1 _qþ Sfq1q ¼ � Ff 1f, ð50Þ

Cfh2
_hþ Cfq2 _qþ Sfh2hþ Sfq2q ¼ � Ff 2f, ð51Þ

Ms
€hþ Cs

_hþ Ksh ¼ Fsf, ð52Þ

where a dot means differentiation with respect to the nondimensional time variable t. The vectors h, q, and f are,

respectively, the global rod deflection vector, the axial flow rate perturbation vector, and the fluid force vector. The

matrices denoted by M are mass matrices, those denoted by C are damping matrices, and those denoted by S are fluid

loading matrices. Subscript ‘s’ refers to ‘solid’ and subscript ‘f’ to fluid. Finally, Ks is the structural stiffness matrix, and

the matrices denoted by F are fluid-structure coupling matrices. The structural matrices are all symmetric. The fluid

equations however include asymmetric load, damping, and fluid-structure coupling matrices, which are responsible for

the interesting dynamical behaviour of the system (see Sections 8 and 9).

The implementation of the fluid boundary conditions is shown in Appendix D. The element matrices are given in

Appendix E. [For assembly of the element matrices into global matrices, and implementation of structural boundary

conditions, we refer to Cook et al. (1989) and Zienkiewicz and Taylor (1991).]

By defining a state vector fh q fgT the coupled equations (50)–(52) can be grouped into a single matrix system on the

form

Mf 0 0

0 0 0

Ms 0 0

264
375 €h

€q
€f

8><>:
9>=>;þ

Cfh1 Cfq1 0

Cfh2 Cfq2 0

Cs 0 0

264
375 _h

_q
_f

8><>:
9>=>;þ

0 Sfq1 Ff 1

Sfh2 Sfq2 Ff 2

Ks 0 �Fs

264
375 h

q

f

8><>:
9>=>; ¼ f0g. (53)

The matrices can, from left to right, be considered as a generalized mass, damping, and stiffness matrix, respectively.
7. Eigenvalue problem

The generalized mass matrix in (53) is singular,1 so this matrix system cannot be directly brought into a standard,

first-order system. To circumvent this problem, (52) is rewritten as

f ¼ F�1s ½Ms
€hþ Cs

_hþ Ks�. (54)
1This appears to be typical in coupled problems, see e.g. Zienkiewicz and Taylor (1991, p. 422) and Lesoinne et al. (2001). The latter

reference gives a different method for circumventing a similar though not identical problem; the former reference does not consider an

eigenvalue analysis, but a transient analysis.
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Inserting this into (50)–(51) gives two new coupled fluid-structure equations,

Ma
€hþ Cha

_hþ Cqa _qþ Shahþ Sqaq ¼ 0, (55)

Mb
€hþ Chb

_hþ Cqb _qþ Shbhþ Sqbq ¼ 0, (56)

where Ma ¼Mf þ Ff 1F
�1
s Ms, Cha ¼ Cfh1 þ Ff 1F

�1
s Cs, and equivalently for the remaining terms. [The force vector f

could also have been isolated from (50), or (51).] By introducing the additional variable v ¼ _h, (55)–(56) can be grouped

into the first-order system

Sha 0 Sqa

Shb 0 Sqb

0 �I 0

264
375 h

v

q

8><>:
9>=>; ¼ �

Cha Ma Cqa

Chb Mb Cqb

I 0 0

264
375

_h

_v

_q

8><>:
9>=>;. (57)

With discretization into Ne finite elements, the matrices in (57) will be of size2 6Ne � 6Ne. Setting

fhðtÞ vðtÞ qðtÞgT ¼ fĥ v̂ q̂gT expðLtÞ, Eq. (57) has the standard form of the ‘extended’ eigenvalue problem Az ¼ LBz.
This is solved using the QR method (Press et al., 1992).

The equilibrium configuration of the rod ðhðy; tÞ � eÞ is stable if all eigenvalues Lj satisfy ReðLjÞo0. The equilibrium

configuration is unstable if ReðLjÞ40 for at least one j. The instability is of divergence (flutter) type if ImðLjÞ ¼ ðaÞ0.
The flow speed V̄ where instability is initiated will be referred to as the critical flow speed V̄ cr.
8. Numerical results

Discussion of the stability characteristics (behaviour of eigenvalues) will be given in terms of physical (dimensional)

parameters. Specifically, dimensional eigenvalues3 L̄ ¼ Lt� ½s�1� will be shown as functions of the dimensional mean

axial flow speed V̄ ½ms�1� defined by (20). Although the theory has been formulated in terms of nondimensional

parameters, the use of dimensional parameters is thought to be more informative in the present context, and it makes

direct comparison with the results given in earlier studies, e.g. (Fujita and Shintani, 2001; Fujita et al., 2004), possible.

The eigenvalue projection to be used is similar to the one employed in Paı̈doussis et al. (1990).

Results will be presented for two different rod materials (PVC and silicone rubber) and two different fluids (water and

air), following basically examples given in Fujita and Shintani (2001) and Fujita et al. (2004). In examples with hollow

rods, the internal radius will be denoted by Ri. Rod material and fluid data are given in Tables 1 and 2. Pressure loss

coefficients xin, xex are both set equal to zero. Structural damping (Kelvin–Voigt type) is included, using the value

E� ¼ 2� 105 N sm�2 in any example (Sugiyama et al., 1985). It has been confirmed that inclusion of structural

damping does not affect the predicted critical flow speeds to any significant extent. [Divergence instability boundaries

are not affected by damping; only flutter instability boundaries.] Inclusion of Kelvin–Voigt type damping is, however,

convenient from a numerical point of view, because it effectively and realistically damps the higher modes with higher

intensity (Bishop and Fawzy, 1976).

8.1. Influence of flow model

Figs. 3 and 4 show the real and imaginary components of the eigenvalues as function of the mean flow speed for a

hollow, simply supported PVC-rod in water flow. [Only the positive branches of ImðL̄Þ are shown. It is also to be noted

that the curves have been plotted with dots (i.e., not with lines) due to their complexity. This is the reason for the ‘dotted

line appearance’ in places with large gradients.] The dimensions of the rod are as follows: R0 ¼ 10mm, Ri ¼ 7mm, and

L ¼ 1000mm. The fluid gap varies from 5mm down to 1mm, as indicated in the figure captions. Laminar flow is

assumed in Fig. 3, while the correct (laminar-turbulent) friction model is used in Fig. 4.

To any eigenvalue L̄ there is an eigenvector zT ¼ fĥ v̂ q̂gT which includes both the structural variables ĥ and v̂, and

the fluid variables q̂, see Eq. (57). Each eigenvalue branch is thus related to a ‘mode’ of the coupled fluid-structure

system. There are no pure ‘fluid modes’ and no pure ‘solid modes’ (Barbone and Crighton, 1994). The almost linear,

‘fan-like’ eigenvalue branches are, however, due to inclusion of q̂ in the eigenvalue problem. They are not present in a

formulation based on a relation like (42), where the flow rate perturbation has been eliminated. [Compare, for example,

with the eigenvalue curves in Paı̈doussis et al. (1990) and Fujita and Shintani (2001).]
2Each node has two degrees of freedom (Cook et al., 1989).
3For t� and L, see Eq. (27) and the text following Eq. (57), respectively.
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Table 2

Fluid data

Fluid Density r ðkgm�3Þ Kinematic viscosity n ðm2 s�1Þ

Water 998 1:004� 10�6

Air 1.205 1:500� 10�5

Table 1

Rod data

Material Density rr ðkgm
�3Þ Young’s modulus E ðNm�2Þ

PVC 1:40� 103 3:00� 109

Silicone rubber 1:20� 103 9:44� 107

M.A. Langthjem et al. / Journal of Fluids and Structures 22 (2006) 617–645630
The ‘linear’ eigenvalue branches are predominantly related to fluid motion, while the ‘remaining’ branches are

predominantly related to structural motion (although they are, of course, strongly modified by the fluid flow). Then,

inspired by Chen and Rosenberg (1975), we will refer to the former as ‘fluid branches’, and to the latter as ‘solid

branches’ (to have a convenient means of reference).

That the fluid branches are (almost) linear can be understood by imagining a fluid flow past a completely rigid rod.

Then the structural deflection ĥ will not appear in (50) and (51), which can be reduced to a single matrix equation

(eigenvalue problem) of the form L̄Uq̂ ¼ Vq̂. By inspection of (E.1) and (E.2) in Appendix E (or of (45) and (46)) it can

be seen that U will be independent of the mean flow rate qy0, while V will depend linearly on it. Accordingly, any

eigenvalue L̄ will be a linear function of the mean flow speed V̄ .

The critical flow speeds related to Figs. 3 and 4 are summarized in Table 3. The corresponding critical Reynolds

numbers Recr ¼ V̄ crH̄0=n are also included. The results are obtained using ten finite elements ðNe ¼ 10Þ. Table 4

indicates that this gives the critical flow speed to three significant figures (while clamped boundary conditions are

somewhat more demanding). Accordingly, any result for simply supported rods in this section is obtained with Ne ¼ 10,

unless stated otherwise.

A divergence instability is initiated in any of the 10 cases shown in Figs. 3 and 4. The instability originates from

coalescence of a pair of complex conjugate eigenvalues on the ImðL̄Þ ¼ 0 axis (i.e., a pitchfork bifurcation), at the speed

V̄pb, say. But the corresponding real parts are less than zero, so instability is not initiated immediately. This happens at

a slightly higher flow speed, V̄ cr, where the uppermost branch crosses the line ReðL̄Þ ¼ 0.

By comparing the results for corresponding fluid gaps in Figs. 3 and 4 it will be seen that the bifurcation point speeds

V̄pb in general are lower for the turbulent model. Values of the critical speeds V̄ cr are, however, about the same (see

again Table 3).

It is interesting to note that by the turbulent model the ‘divergence bubble’ moves further and further down by

decreasing fluid gap. For H̄0 ¼ 1mm it has moved below the ReðL̄Þ ¼ 0 line, resulting in a significant increase in V̄ cr.

[Flutter, rather than divergence, is initiated at V̄ cr ¼ 53:9m s�1 ðRecr ¼ 53:7� 103Þ. More examples on flutter will

follow a little later in this subsection.]

Figs. 5 and 6 are for a massive, simply supported silicone rubber rod in water and air flow, respectively. The rod

length L ¼ 800mm, the radius R0 ¼ 8mm, and the fluid gap H̄0 ¼ 4mm (corresponding to the case considered by

Fujita et al., 2004, both theoretically and experimentally). Parts (a) are obtained with the laminar flow model, while

parts (b) are obtained with the turbulent flow model. With water flow (Fig. 5(a)) the laminar model gives the critical

flow speed V̄ cr ¼ 3:43m s�1 ðRecr ¼ 13:6� 103Þ, while V̄cr ¼ 3:38m s�1 ðRecr ¼ 13:4� 103Þ is obtained with the

turbulent model (Fig. 5(b)). With air flow (Fig. 6) the values are V̄ cr ¼ 98:4m s�1 ðRecr ¼ 26:2� 103Þ for the laminar
Fig. 3. Real and imaginary parts of the eigenvalues L̄½s�1� as functions of the flow speed V̄ ½ms�1�, for a simply supported

(pinned–pinned) rod in various fluid gaps H̄0, using a laminar flow model. [Rod material: PVC; dimensions: L ¼ 1000mm,

R0 ¼ 10mm, Ri ¼ 7mm; fluid: water.] (a) H̄0 ¼ 5mm: V̄ cr ¼ 16:80m s�1 ðRecr ¼ 83:7� 103Þ; (b) H̄0 ¼ 4mm: V̄ cr ¼

15:05ms�1 ðRecr ¼ 60:0� 103Þ; (c) H̄0 ¼ 3mm: V̄ cr ¼ 13:05m s�1 ðRecr ¼ 39:0� 103Þ; (d) H̄0 ¼ 2mm: V̄ cr ¼ 10:65m s�1 ðRecr ¼

21:2� 103Þ; (e) H̄0 ¼ 1mm: V̄ cr ¼ 8:15ms�1 ðRecr ¼ 8:11� 103Þ.
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Table 3

Influence of fluid gap H̄0 on the critical flow speed V̄ cr for a simply supported PVC rod in water flow. The rod dimensions are as

follows: L ¼ 1000mm, R0 ¼ 10mm, Ri ¼ 7mm

Fluid gap H̄0 (mm) V̄ cr lam. flow Recr lam. flow V̄ cr turb. flow Recr turb. flow

5 16.80 83:7� 103 16.65 82:9� 103

4 15.05 60:0� 103 14.85 59:2� 103

3 13.05 39:0� 103 12.90 38:5� 103

2 10.65 21:2� 103 10.98 21:9� 103

1 8.15 8:12� 103 53:9 (flutter) 53:7� 103

Table 4

Influence of the number of finite elements Ne on the critical flow speed V̄ cr ðms�1Þ, for two different boundary conditions

Ne 10 20 30 40 50 60

Clamped–clamped, H̄0 ¼ 4mm 30.87 30.97 30.99 30.99 30.99 30.99

Pinned–pinned, H̄0 ¼ 2mm 10.98 11.00 11.00 11.00 11.00 11.00
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model and V̄ cr ¼ 97:2m s�1 ðRecr ¼ 25:9� 103Þ for the turbulent model—again just a small difference. It is finally

noted that the experiment performed by Fujita et al. (2004) gave the critical flow speed V̄ cr ¼ 86m s�1, while their

analysis, based on Galerkin’s method, gives V̄ cr ¼ 96m s�1.

The eigenvalue curves shown in Fig. 7 are for a hollow, simply supported silicone rubber rod in air flow. Again

Fig. 7(a) is obtained with the laminar flow model and Fig. 7(b) with the turbulent model. The dimensions of the rod are

as in the first example, that is, R0 ¼ 10, Ri ¼ 7, L ¼ 1000mm, and the fluid gap H̄0 ¼ 1mm. In this case flutter is

initiated at V̄ cr. For the laminar flow model (Fig. 7(a)) the critical flow speed V̄ cr ¼ 54:2m s�1 ðRecr ¼ 3:61� 103Þ; for

the turbulent model (Fig. 7(b)), V̄ cr ¼ 45:4m s�1 ðRecr ¼ 3:03� 103Þ. The corresponding flutter frequencies Ocr ¼

ImðL̄Þcr are 35.50Hz and 38.50Hz, respectively. [Increasing the number of finite elements to Ne ¼ 20 does not alter the

critical flow speeds nor the flutter frequencies to within three significant digits.]

Flutter of a simply supported rod by laminar flow ðReo2000Þ is also possible. An example on this is obtained by

increasing the length of the rod from the previous example to L ¼ 2000mm; otherwise the data are the same. The

eigenvalue curves are shown in Fig. 8. Flutter is initiated at V̄ cr ¼ 11:80m s�1 ðRecr ¼ 787Þ. The corresponding flutter

frequency Ocr ¼ 13:46Hz. Also here, increasing the number of finite elements to Ne ¼ 20 does not alter the critical flow

speed nor the flutter frequency (to within three significant digits). Part (a) shows the 10-element solution, part (b) the 20-

element solution. Fig. 9 shows the flutter oscillations (part a) and corresponding phase angle (part b), using Ne ¼ 20.

These figures will be discussed in the Section 9.

In the last example of this section we return to the case considered in Fig. 5, but replace the pinned–pinned boundary

conditions by clamped-free conditions (a cantilever, clamped at the upstream end and free at the downstream end). The

eigenvalue curves are shown in Fig. 10. Again, Fig. 10(a) is for the laminar model, while Fig. 10(b) is for the turbulent

model. Both give a flutter instability at V̄cr; the laminar model gives V̄ cr ¼ 11:50m s�1 ðRecr ¼ 45:8� 103Þ and

Ocr ¼ 30:26Hz, while the turbulent model gives V̄ cr ¼ 14:95m s�1 ðRecr ¼ 59:6� 103Þ and Ocr ¼ 77:78Hz [Ne ¼ 10 has

been used here]. Fujita and Shintani (2001) report a similar example. The flutter instability is not surprising, because the

jet discharging from the free end of the rod corresponds to a follower force, just as in the case of a cantilevered fluid-

conveying pipe (Paı̈doussis, 1998). [This can be verified mathematically from (59), to be given in Section 9.]

It is finally noted that the complicated appearance of the eigenvalue branches in Fig. 10 is partly due to interactions

between them: at a certain flow speed, one branch (branch A say) and its complex conjugate (which is not shown)

collide with another pair of complex conjugate branches (branches B say); after the collision (i.e., at a slightly higher

flow speed) the two pairs of branches change roles, such that branches A continue in the form of branches B, and vice

versa. Interactions take place both between ‘fluid modes’ and ‘solid modes’, and between different ‘solid modes’. A case
Fig. 4. Same as Fig. 3, but using the turbulent flow model. (a) H̄0 ¼ 5mm: V̄ cr ¼ 16:65m s�1 ðRecr ¼ 82:9� 103Þ; (b) H̄0 ¼ 4mm:

V̄ cr ¼ 14:85m s�1 ðRecr ¼ 59:2� 103Þ; (c) H̄0 ¼ 3mm: V̄ cr ¼ 12:90m s�1 ðRecr ¼ 38:5� 103Þ; (d) H̄0 ¼ 2mm: V̄ cr ¼ 10:98ms�1

ðRecr ¼ 21:9� 103Þ; (e) H̄0 ¼ 1mm: V̄ cr ¼ 59:3m s�1 ðRecr ¼ 53:7� 103Þ (flutter instability).
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Fig. 5. Influence of flow model (laminar/turbulent) on real and imaginary parts of the eigenvalues, for a simply supported

(pinned–pinned) rod in a H̄0 ¼ 4mm fluid gap. [Rod material: silicone rubber; dimensions: L ¼ 800mm, R0 ¼ 8mm, Ri ¼ 0mm; fluid:

water.] (a) Laminar flow: V̄ cr ¼ 3:425m s�1 ðRecr ¼ 13:6� 103Þ; (b) turbulent flow: V̄ cr ¼ 3:375m s�1 ðRecr ¼ 13:4� 103Þ.
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of interaction between ‘fluid modes’ and ‘solid modes’ is also apparent in Fig. 5 (see the imaginary parts). [The

phenomenon is also seen in the dynamics of fluid-conveying pipes (Bishop and Fawzy, 1976; Paı̈doussis, 1998), fluid-

conveying shells (Chen and Rosenberg, 1975; Paı̈doussis, 2004), and Beck’s column with damping (Langthjem, 1994).]

8.2. Influence of equilibrium offset

The influence of equilibrium offset is illustrated by Table 5. Case I is related to the divergence example of Fig. 5 and

Case II to the flutter example of Fig. 8. It is found that offset lowers the critical flow speed for both divergence and

flutter. This seems plausible as the offset ‘scales up’ the fluid matrices (see Appendices D and E) and thus the fluid

loading, while the stiffness of the rod remains the same. Li et al. (2002) observed a similar effect in the case of a spring-

mounted rigid rod.
9. Mechanism of instability

This section attempts to explain the possible mechanisms behind the divergence and flutter instabilities, and why the critical

flow speed is largely insensitive to the flow model (laminar or turbulent) by divergence but quite sensitive to it by flutter.

The analysis is made under the assumptions of laminar flow and zero equilibrium offset, such that the

displacement–pressure relation (42) can be used.

By integrating the pressure over the rod surface, as explained in Section 5, a displacement-fluid force relation is

obtained as

e2
q2f

qy2
� f ¼ p0

1

h̄

q2h0

qt2
þ
2q̄y

h̄2
q2h0

qyqt
þ

b

h̄3
qh0

qt
þ b

3q̄y

h̄4
qh0

qy
þ

1

h̄3
q2h0

qy2

� �
. (58)
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Fig. 6. Same as Fig. 5, but with air (instead of water). (a) Laminar flow: V̄ cr ¼ 98:40m s�1 ðRecr ¼ 26:2� 103Þ; (b) turbulent flow:

V̄ cr ¼ 97:20m s�1 ðRecr ¼ 25:9� 103Þ.

M.A. Langthjem et al. / Journal of Fluids and Structures 22 (2006) 617–645 635
This equation can be coupled with (33) to give the single fluid-structure force balance equation

q2

qt2
mþ

p0

h̄0

� �
h0 � e2m

q2h0

qy2

� �
þ

q
qt

c
q4h0

qy4
� e2

q6h0

qy6

� �
þ p0 2

q̄y

h̄20

qh0

qy
þ

b

h̄30
h0

 !( )

þ k
q4h0

qy4
� e2

q6h0

qy6

� �
þ p0 3b

q̄y

h̄40

qh0

qy
þ

q̄2y

h̄
3

0

q2h0

qy2

 !
¼ 0, ð59Þ

valid under the conditions stated in Section 4.3. This must be emphasized because it implies, among other things but

most importantly, that the fluid boundary conditions (32) must be in the form p ¼ 0 at y ¼ 0; 1—a condition satisfied

only with, at least, simply supported rod ends. Accordingly, only pinned–pinned and clamped–clamped boundary

conditions will be considered in the following.

As e251 in all the numerical examples considered, the terms in (59) multiplied by this factor may be neglected. We

will, however, for completeness, keep these terms in the discussion to follow.

9.1. Divergence

Divergence is independent of time. Removing the explicitly time-dependent terms from (59) gives the static force

balance equation

k
q4h0

qy4
� e2

q6h0

qy6

� �
þ p0 3b

q̄y

h̄40

qh0

qy
þ

q̄2y

h̄30

q2h0

qy2

" #
¼ 0. (60)

Here the terms in curly brackets f g make up the flexural restoring force. The first term in square brackets ½ � is a

(tangential and thus nonconservative) fluid friction force. The second term in square brackets is a ‘centrifugal force’ due

to the moving load provided by the flowing fluid; it corresponds to the compressive end load in the usual Euler buckling

problem. This term originates from the convective term qðQ2
Y=HÞ=qY in (2).
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Fig. 7. Real and imaginary parts of the eigenvalues L̄½s�1� as functions of the flow speed V̄ ½ms�1�, for a simply supported

(pinned–pinned) rod in air flow. [Rod material: silicone rubber; dimensions: L ¼ 1000mm, R0 ¼ 10mm, Ri ¼ 7mm, H̄0 ¼ 1mm]. (a)

Laminar flow model: V̄ cr ¼ 54:20ms�1 ðRecr ¼ 3613Þ, Ocr ¼ 35:50Hz; (b) turbulent flow model: V̄ cr ¼ 45:40m s�1 ðRecr ¼ 3027Þ,

Ocr ¼ 38:50Hz.
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It can be shown that the fluid friction force does not affect the divergence flow speed if the boundary conditions

satisfy the equation4 h0ð0Þ ¼ h0ð1Þ. This will be done by consideration of a work-energy balance equation, obtained by

multiplying (60) by the rod deflection h0, followed by integration along the rod, 0pyp1.

Considering first the friction term p03bðq̄y=h̄40Þðqh0=qyÞ, integration by parts gives (leaving out the factor p03bq̄y=h̄40)Z 1

0

h0
qh0

qy
dy ¼

1

2
h20
� �1

0
. (61)

Thus, if h0ð0Þ ¼ h0ð1Þ, as it is by clamped–clamped and pinned–pinned rod ends, we haveZ 1

0

h0
qh0

qy
dy ¼ 0. (62)

The remaining terms are

k
1

2

Z 1

0

q2h0

qy2

� �2

dyþ e2
Z 1

0

q3h0

qy3

� �2

dy

( )
� p0

q̄2y

h̄30

1

2

Z 1

0

qh0

qy

� �2

dy ¼ 0. (63)

This equation shows that the ‘centrifugal force’ (the last term) is solely responsible for the divergence instability in the

clamped–clamped and pinned–pinned cases. In other words, the onset of divergence is independent of fluid friction. It

must be emphasized that this is under the conditions stated in Section 4.3, which make (59) valid. Turbulent flow (and

equilibrium offset) may modify this conclusion. But it appears to support and explain the numerical results that

inclusion of correct turbulent fluid friction (instead of laminar friction) only affects the predicted divergence speeds

slightly.
4The time-dependence is suppressed in this subsection.
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Fig. 8. Real and imaginary parts of the eigenvalues L̄½s�1� as functions of the flow speed V̄ ½ms�1�, for a simply supported

(pinned–pinned) rod in air flow. [Rod material: silicone rubber; dimensions: L ¼ 2000mm, R0 ¼ 10mm, Ri ¼ 7mm, H̄0 ¼ 1mm]. (a)
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9.2. Flutter

For the analysis of flutter, much information can be obtained from a power balance equation. As flutter is a dynamic

instability, the start point must be the full version of (59). Multiplying this equation by the rod velocity qh0=qt, followed
by integration along the rod ð0pyp1Þ, gives the power balance equation

q
qt
ðTþVi þVeÞ ¼ �Dstr �Dflu �Pnc. (64)
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Fig. 10. Eigenvalue curves for the case of Fig. 5 but with clamped-free boundary conditions, rather than pinned–pinned. (a) Laminar

flow model: V̄ cr ¼ 11:50m s�1 ðRecr ¼ 45:8� 103Þ, Ocr ¼ 30:26Hz; (b) turbulent flow model: V̄ cr ¼ 14:95m s�1 ðRecr ¼ 59:6� 103Þ,

Ocr ¼ 77:78Hz.

Table 5

Influence of equilibrium offset on the critical flow speed V̄ cr ðms�1Þ, for two different cases

E 0 0:1� H̄0 0:2� H̄0 0:3� H̄0

Case I, V̄ cr 3.38 3.33 3.19 3.03

Case II, V̄ cr 11.80 11.34 11.00 10.30

Case II, Ocr 13.46 13.50 13.90 14.38

Case I: simply supported, massive silicone rubber tube, L ¼ 800mm, R0 ¼ 8mm, H̄0 ¼ 4mm, with water flow. Case II: simply

supported, hollow silicone rubber tube, L ¼ 2000mm, R0 ¼ 10mm, Ri ¼ 7mm, H̄0 ¼ 1mm, in air flow.
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Here

T ¼ mþ
p0

h̄0

� �
1

2

Z 1

0

qh0

qt

� �2

dyþ e2m
1

2

Z 1

0

q2h0

qtqy

� �2

dy (65)

is the kinetic energy of the rod and the surrounding fluid,

Vi ¼ k
1

2

Z 1

0

q2h0

qy2

� �2

dyþ e2
Z 1

0

q3h0

qy3

� �2

dy

( )
(66)

is the elastic (bending) energy of the rod (internal potential energy),

Ve ¼ �p0
q̄2y

h̄30

1

2

Z 1

0

qh0

qy

� �2

dy (67)
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is the work done by conservative compressive forces (external potential energy),

Dstr ¼ c

Z 1

0

q3h0

qtqy2

� �2

dyþ e2
Z 1

0

q4h0

qtqy3

� �2

dy

( )
(68)

is the rate of work done by structural damping forces,

Dflu ¼ p0
b

h̄30

Z 1

0

qh0

qt

� �2

dy (69)

is the rate of work done by fluid damping forces, and

Pnc ¼ 3bp0
q̄2y

h̄40

Z 1

0

qh0

qt
qh0

qy
dy (70)

is the rate of work done by nonconservative fluid friction forces.

For analysis of (64) we will follow Benjamin’s approach, as given in his discussion of the energy balance in articulated

fluid-conveying pipes (Benjamin, 1961, p. 468).

The net energy delivered to the rod by the flowing fluid during one period of oscillation, T ¼ 2p=o, is given by

DW ¼ �
Z T

0

ðDstr þDflu þPncÞdt. (71)

For harmonic vibrations the net change in total mechanical energy ½TþVi þVe�
T
0 during one period is zero. Then,

from (64), DW must also be zero. The damping power terms Dstr and Dflu are positive definite, as seen from (68) and

(69). They are also independent of the steady flow rate q̄y. Energy is thus constantly dissipated during vibrations,

meaning that DWo0 when q̄y is zero or small.

To have DW ¼ 0 (with q̄y40) it is necessary thatZ T

0

Z 1

0

qh0

qt
qh0

qy
dydto0. (72)

This means that rod sections must slope backward to the direction of motion over ‘most’ part of the length, just as by

the well-known cantilevered fluid conveying pipe (Benjamin, 1961; Paı̈doussis, 1998). When (72) is satisfied and the flow

rate q̄y is increased further, DW will become larger than zero, and unstable (amplified) vibrations (flutter) will set in.

Harmonic vibrations exist thus only at the verge to flutter instability.

Exactly at this point (the stability/flutter limit) the deflection h0 can be written as

h0ðy; tÞ ¼ AðyÞ cosðotþ fðyÞÞ. (73)

Inserting this expression into (72) and carrying out the time integration gives

p
Z 1

0

AðyÞ2
qf
qy

dyo0. (74)

This equation shows that qf=qy necessarily must be less than 0 at least for those values of y where AðyÞ is large.

It is noted that the spatial gradient of f is the wavenumber k in a travelling wave solution on the form

h0ðy; tÞ ¼ AðyÞ cosðot� kyþ f0Þ, f0 being a constant, that is, k ¼ �qf=qy (Lighthill, 1978, p. 241; Whitham, 1999,

p. 364).

Fig. 9 shows the phase angle fðyÞ for the pinned–pinned rod in air flow. The (bending) wavenumber kð¼ �qf=qyÞ

takes a positive value in the whole range 0:3oyo0:6. In this domain the rod vibrates much like the said cantilevered

fluid-conveying pipe. Near the ends, k is decreasing towards zero, and the travelling wave dies out.

Returning to (71), this equation shows, together with (70), that fluid friction, represented by the parameter b, is the

sole mechanism behind the flutter instability.

This implies that the instability should change from flutter to divergence if the fluid viscosity is reduced beyond a

certain level. Fig. 11 verifies this. Data is the same as used in Fig. 8(a), except that the kinematic viscosity n is multiplied

by 10�6. Instead of flutter at V̄ cr ¼ 11:80m s�1, divergence is now initiated at V̄ cr ¼ 19:00m s�1. With the very low

kinematic viscosity, this corresponds to a critical Reynolds number Recr ¼ 1:3� 109.

The kinematic viscosity was likewise reduced in the case of Fig. 10, but here flutter continues to prevail. The

cantilevered fluid conveying pipe (Paı̈doussis, 1998) may provide a possible explanation. Here the dynamics is

independent of fluid friction (Benjamin, 1961), and the flutter instability is caused solely by the last (‘centrifugal force’)

term in (59).
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Fig. 11. The case of Fig. 8 repeated with the very small kinematic viscosity n ¼ 1:5� 10�11 m2 s�1 (the actual value of air� 10�6).

Divergence is initiated at V̄ cr ¼ 19:00m s�1 ðRecr ¼ 1:3� 109Þ.

M.A. Langthjem et al. / Journal of Fluids and Structures 22 (2006) 617–645640
That the turbulent model predicts a lower critical flow speed than the laminar model by flutter (Fig. 7) can be

understood qualitatively by the fact that the random motions of turbulence increase the effective value of the kinematic

viscosity n (Lighthill, 1986, p. 75). Thus the (negative) nonconservative fluid friction force (70) is, at a given flow rate,

and other things being equal, smaller (larger in terms of absolute value) by turbulent flow. [This does not apply to the

cantilevered rod of Fig. 10, where the laminar flow model gives the lowest critical speed—again because the onset of

flutter not is governed solely by viscous forces.]

That the flutter instability is characterized by a travelling (progressive) wave is in agreement with, and supports, the

ideas put forward by Inada (2004) in connection with a study of a clamped–clamped elastic plate in leakage flow. Inada

considers the dispersion relation to an equation analogous to (59), obtained by inserting a travelling wave solution on

the form h0ðy; tÞ ¼ constant� exp½iðot� kyÞ�, and finds with a given o (obtained from numerical solution of the

boundary value problem) that one of the roots k of the resulting sixth-order polynomial corresponds to a forward

travelling wave. Returning to the dispersion relation, Inada finds that this root can be responsible for negative damping,

which in turn is responsible for the onset of flutter. He also points out that this mechanism is different from the negative

damping flutter mechanism, caused by a fluid force delay, which can occur in the related one-degree-of-freedom

leakage-flow system considered as a special case in Inada and Hayama (1990). [A rigid plate allowed only translational

motion, not rotational motion.]

The motion of the said one-degree-of-freedom system for onset of instability is basically a standing wave (of very

simple form, though), contrary to the travelling wave in the continuous system. A referee raised the question of whether

such an instability is also possible in the continuous system. The answer is that, it is not possible for the configurations

considered here, as a standing wave is not a possible solution of (59) with q̄y40. This is because the terms

2ðq̄y=h̄20Þq
2h0=qtqy and 3bðq̄y=h̄40Þqh0=qy, involving first-order spatial derivatives, couple the modes (Chen, 1981). And

coupled modes (standing waves) make up travelling waves (Feynman et al., 1971). The standing wave-type instability

may be possible if only the tip of a cantilevered rod is immersed in leakage flow, as suggested by the referee, but this will

not be considered here.
10. Conclusions

In this paper we have bridged and extended the models of Li et al. (2002) and Fujita and Shintani (2001) to account

for a flexible rod, with offset of the equilibrium position, in laminar or turbulent flow. The main findings can be

summarized as follows.
(i)
 An energy balance analysis shows that divergence instability of a rod with at least pinned boundary conditions at

both ends is due to centrifugal forces only; it is independent of fluid friction. This supports, and partly explains, the

numerical results that inclusion of (correct) turbulent fluid friction at high Reynolds numbers (where a laminar

friction model is invalid) only affects the predicted divergence speeds slightly.
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(ii)
5S
The energy balance analysis also explains how a flutter instability is materialized for pinned–pinned and

clamped–clamped rods. It is found that a progressive (forward/downstream travelling) wave is necessary for flutter

instability. In other words, the flutter instability is characterized by a progressive wave. Also, it is explicitly shown

that fluid friction is the sole mechanism behind the flutter instability.
(iii)
 While divergence instability is found to be quite insensitive to a ‘wrong’ fluid friction model, employing a laminar

fluid friction model at high Reynolds numbers predicts too high critical flow speeds in cases of flutter instability of

a pinned–pinned rod. Based again on the energy balance analysis, it is suggested, as a possible explanation, that this

is because the instability-responsible friction force is increased, as turbulence increases the effective value of the

kinematic viscosity.
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Appendix A. Derivation of the friction terms in (1) and (2)

Let the flow, of velocity U, be in a direction characterized by the angle c, such that U ¼ U sinc is the circumferential

velocity, and V ¼ U cosc the axial velocity.

Diffusion of momentum is governed by the term nq2U=qZ2, where n is the kinematic viscosity, and Z is the radial

coordinate, with Z ¼ 0 on the rod surface and Z ¼ H on the surface of the outer rigid cylinder. Integration of this term

over the gap gives

n
Z H

0

q2U
qZ2

dZ ¼ n
qU
qZ

				
Z¼H

�
qU
qZ

				
Z¼0

� �
. (A.1)

For fully developed laminar flow between two plates,5 the velocity profile takes the hyperbolic form (Fox and

McDonald, 1985, p. 336)

U ¼ 6
Q

H

Z

H
�

Z2

H2

� �
, (A.2)

where Q is the flow rate, see Eq. (4). Inserting (A.2) into (A.1), the right-hand side of (A.1) can be written as

�12n
Q

H3
. (A.3)

For fully developed turbulent flow, the velocity gradient very close to the walls is assumed to be constant (Fox and

McDonald, 1985, p. 353),

qU
qZ

				
Z¼0

¼ U2�=n;
qU
qZ

				
Z¼H

¼ �U2�=n. (A.4)

Here U� is the so-called friction velocity, defined as

U� ¼
ffiffiffiffiffiffiffiffi
s=r

p
; s ¼

l
4

r
2

Q2

H2
, (A.5)

where s is the wall shear stress, r is the fluid density, and

Q2 ¼ H

Z H

0

U2 dZ. (A.6)
ee the explanation of the ‘small-gap’ approximation given in Section 2.
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When (A.4) and (A.5) are inserted into (A.1), the right-hand side of (A.1) can be written as

�
l
4

Q2

H3
. (A.7)
Appendix B. Details concerning linearization of the friction terms

Inserting (9) into the X and Y components of the squared flow rates (5) and keeping only constant terms and terms

linear in the disturbances, the flow rate components reduce as follows:

ðQ2ÞX ¼ QQX ¼ fDQ2
X þ ðQ̄Y þ DQY Þ

2
g1=2DQX

¼ Q̄Y 1þ 2
DQY

Q̄Y

þ
DQ2

X

Q̄2
Y

þ
DQ2

Y

Q̄2
Y

 !1=2

DQX

¼ Q̄Y 1þ
DQY

Q̄Y

þ O
DQ2

X

Q̄2
Y

 !
þ O

DQ2
Y

Q̄2
Y

 ! !
DQX

� Q̄YDQX , ðB:1Þ

ðQ2ÞY ¼ QQY ¼ fDQ2
X þ ðQ̄Y þ DQY Þ

2
g1=2ðQ̄Y þ DQY Þ

¼ Q̄Y 1þ
DQY

Q̄Y

þ O
DQ2

X

Q̄2
Y

 !
þ O

DQ2
Y

Q̄2
Y

 ! !
ðQ̄Y þ DQY Þ

� Q̄2
Y þ 2Q̄YDQY . ðB:2Þ

Next (B.1) and (B.2) are inserted in the friction terms 1
4
lðQ2ÞX=H3 and 1

4
lðQ2ÞY=H3. Keeping only unsteady terms,

and only terms up to first order in the disturbances, the friction terms are reduced as follows:

Laminar case:

l
4

ðQ2ÞX

H3
¼

1

4

48

Q̄Y=n
1�

DQY

Q̄Y

� �
1

H̄3
�

3

H̄4
DH

� �
Q̄YDQX

� 12n
DQX

H̄3
, ðB:3Þ

l
4

ðQ2ÞY

H3
¼

1

4

48

Q̄Y=n
1�

DQY

Q̄Y

� �
1

H̄3
�

3

H̄4
DH

� �
ðQ̄2

Y þ 2Q̄YDQY Þ

� 12n
DQY

H̄3
� 36n

Q̄Y

H̄4
DH, ðB:4Þ

which agree with the corresponding terms in Eqs. (6) and (7) of Fujita and Shintani (2001).

Turbulent case:

l
4

ðQ2ÞX

H3
¼

1

4
0:26

Q̄Y

n

� ��0:24
1� 0:24

DQY

Q̄Y

� �
1

H̄3
�

3

H̄4
DH

� �
Q̄YDQX

�
1

4
0:26

Q̄Y

n

� ��0:24
Q̄Y

H̄3
DQX , ðB:5Þ

l
4

ðQ2ÞY

H3
¼

1

4
0:26

Q̄Y

n

� ��0:24
1� 0:24

DQY

Q̄Y

� �
1

H̄3
�

3

H̄4
DH

� �
ðQ̄2

Y þ 2Q̄YDQY Þ

�
1

4
0:26

Q̄Y

n

� ��0:24
1:76

Q̄Y

H̄3
DQY � 3

Q̄2
Y

H̄4
DH

� �
. ðB:6Þ

By making use of the definitions (12) and (18), the two sets of expressions, (B.3)–(B.4) and (B.5)–(B.6), can be unified

as given in (15) and (16).
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Appendix C. Offset correction functions

Including terms up to Oðe3Þ in the Taylor expansions of h̄�1; h̄�2; . . . ; the functions �1; �2; . . . ; �9, appearing in

(45)–(47), are given by

�1 ¼ 1þ
1

2

e2

h̄0r0
þ

1

4

e2

h̄20
�

3

8

e4

h̄30r0
; �2 ¼ 1þ

e2

h̄0r0
þ

3

4

e2

h̄20
�
3

2

e4

h̄30r0
,

�3 ¼ 1þ
3

2

e2

h̄0r0
þ

3

2

e2

h̄20
�

15

4

e4

h̄3
0r0

; �4 ¼ 1þ
5

4

e2

h̄0r0
þ
3

2

e2

h̄20
�

3

4

e4

h̄30r0
,

�5 ¼ 1þ
7

4

e2

h̄0r0
þ 3

e2

h̄20
þ
3

4

e4

h̄30r0
; �6 ¼ 1þ

3

4

e2

h̄0r0
þ

3

4

e2

h̄20
,

�7 ¼ 1þ
9

4

e2

h̄0r0
þ

9

2

e2

h̄20
; �8 ¼ 1þ 3

e2

h̄0r0
þ
15

2

e2

h̄20
,

�9 ¼ 1þ
3

2

e2

h̄0r0
þ

9

4

e2

h̄20
. ðC:1Þ
Appendix D. Implementation of fluid boundary conditions

The fluid boundary conditions (47) are included in the left-hand side of the y-momentum equation (46), in its

Galerkin weak form, via integration by parts, as follows:

‘e

Z 1

0

NT qf

qy
dz ¼

Z 1

0

NT qf

qz
dz ¼ ½NTf �z¼1 � ½N

Tf �z¼0 �

Z 1

0

qNT

qz
f dz

¼
p0
e2

xex
�9

h̄20
q̄y NT qy0 �

q̄y

h̄0
h0

� �� �
z¼1
þ

p0
e2
ð1þ xinÞ

�9

h̄20
q̄y NT qy0 �

q̄y

h̄0
h0

� �� �
z¼0

�

Z 1

0

qNT

qz
f dz, ðD:1Þ

where ‘e ¼ L=Ne is the element length.
Appendix E. Element matrices

The element matrices appearing in (50) are given by

½Mf �e ¼ �1
p0

h̄0
A1; ½Cfh1�e ¼ �2

p0

h̄20
q̄yA2 þ �3aq̄y

p0

h̄30
A1,

½Cfq1�e ¼ �1
p0

h̄0
A2; ½Sfq1�e ¼ �3aq̄y

p0

h̄30
A2 þ �2

p0

h̄20
q̄yA3; ½Ff 1�e ¼ A2. ðE:1Þ

Those appearing in (51) are given by

½Cfh2�e ¼ �4
p0

h̄20
q̄yA1; ½Cfq2�e ¼ ��6

p0

h̄0
A1,

½Sfh2�e ¼ �7
p0

h̄30
q̄2

yA2 þ 3a�8
p0

h̄40
q̄2yA1 þ �9

p0

h̄30
q̄2yfxexdeNe

A5 þ ð1þ xinÞde1A6g,

½Sfq2�e ¼ ��5
p0

h̄20
q̄yA2 � ð1þ XÞa�7

p0

h̄30
q̄yA1 � �9

p0

h̄20
q̄yfxexdeNe

A5 þ ð1þ xinÞde1A6g,

½Ff 12�e ¼ e2A4, ðE:2Þ

where dij is the Kronecker delta. Finally, those appearing in (52) are given by

½Ms�e ¼ mA1; ½Cs�e ¼ cA7; ½Ks�e ¼ kA7; ½Fs�e ¼ A1. (E.3)
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The element matrices A1;A2; . . . ;A7 are

A1 ¼ ze

Z 1

0

NTNdz; A2 ¼

Z 1

0

NT qN
qz

dz; A3 ¼
1

ze

Z 1

0

NT q2N

qz2
dz,

A4 ¼

Z 1

0

qNT

qz
Ndz; A5 ¼ ½N

TN�z¼1; A6 ¼ ½N
TN�z¼0,

A7 ¼
1

z3e

Z 1

0

q2NT

qz2
q2N

qz2
dz ðE:4Þ

Using the shape function vector (Cook et al., 1989)

N ¼ f1� 3z2 þ 2z3 ðz� 2z2 þ z3Þ‘e 3z2 � 2z3 ð�z2 þ z3Þ‘eg (E.5)

(with 0pzp1), these matrices are evaluated as

A1 ¼
ze

420

156 22‘e 54 �13‘e

4‘2e 13‘e �3‘2e

156 �22‘e

symm: 4‘2e

2666664

3777775; A2 ¼
1

60

�30 6‘e 30 �6‘e

�6‘e 0 6‘e �‘2e

�30 �6‘e 30 6‘e

6‘e ‘2e �6‘e 0

2666664

3777775,

A3 ¼
1

30ze

�36 �33‘e 36 �3‘e

�3‘e �4‘2e 3‘e ‘2e

36 3‘e �36 33‘e

�3‘e ‘2e 3‘e �4‘2e

2666664

3777775; A4 ¼
1

60

�30 �6‘e �30 6‘e

6‘e 0 �6‘e ‘2e

30 6‘e 30 �6‘e

�6‘e �‘2e 6‘e 0

2666664

3777775,

A5 ¼ ze

0 0 0 0

0 0 0

1 0

symm: 0

2666664

3777775; A6 ¼ ze

1 0 0 0

0 0 0

0 0

symm: 0

2666664

3777775,

A7 ¼
1

z3e

12 6‘e �12 6‘e

4‘2e �6‘e 2‘2e

12 �6‘e

symm: 4‘2e

2666664

3777775, ðE:6Þ

where ze ¼ ‘e=L ¼ 1=Ne.
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